skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luschen, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cloud‐radiative forcing (CRF) has been suggested to accelerate tropical cyclone (TC) genesis, but we do not yet understand the role of convective‐scale processes in this cloud‐radiative feedback. We use a convection‐permitting ensemble Weather Research and Forecasting model framework to examine the hypothesis that CRF within stratiform cloud regions weakens downdrafts, allowing the environment to moisten more easily. We specifically compare our control simulations (CTL) of TC development to sensitivity tests that exclude cloud‐radiative forcing (NCRF) either everywhere or just within specific cloud types. Our experiment and analysis indicate that CRF leads to fewer and weaker stratiform downdrafts and greater humidity and moist entropy in the developing TC core, implying suppressed ventilation, with stratiform and anvil CRF dominating this effect. This cloud‐radiative feedback accelerates TC development by promoting faster intensification of both the mid‐level vortex and surface cyclone. 
    more » « less
  2. Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development. 
    more » « less
  3. The RAPSODI (Radiosonde Atmospheric Profiles from Ship and island platforms during ORCESTRA, collected to Decipher the ITCZ) radiosonde dataset was collected during the ORCESTRA field campaign. It is designed to investigate the mechanisms linking mesoscale tropical convection to tropical waves and to air–sea heat and moisture exchanges that regulate convection and tropical cyclone formation. The campaign began at the Instituto Nacional de Meteorologia e Geofisica (INMG) on Sal on the Cape Verde Islands, continued with ship-based observations aboard the R/V Meteor across the Atlantic, and concluded at the Barbados Cloud Observatory (BCO) in the eastern Caribbean. During the campaign, a total of 624 radiosondes were launched, capturing high-resolution profiles of temperature, humidity, pressure, and winds. This radiosonde dataset, encompassing raw, quality-controlled, and vertically gridded data, is detailed in this paper and offers a valuable resource for investigating the atmospheric structure and processes shaping tropical convection and the intertropical convergence zone (ITCZ). The complete dataset is openly available at ipfs://bafybeid7cnw62zmzfgxcvc6q6fa267a7ivk2wcchbmkoyk4kdi5z2yj2w4. 
    more » « less
    Free, publicly-accessible full text available November 20, 2026